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On the Line-Integral Formulation of
Mode-Matching Technique

G. Figlia and G. G. Gentili

Abstract—In this paper, a brief description of the line-integral formula-
tion of mode matching is recalled, and the analysis is extended to the case
of a TEM mode, normalization integrals, and degenerate eigenvalues.

Index Terms—Mode matching, waveguide scattering problems.

I. INTRODUCTION

In spite of the great popularity of the mode-matching (MM)
technique to solve waveguide scattering problems, there are still some
rather unexplored features concerning the line-integral formulation
of the coupling integrals. Line integrals can be used instead of
standard surface integrals leading to a more efficient implementation
of MM [1]. Line integrals have been used in [2]–[5], and in [6], a
generalization of [1] to the hybrid-mode case was also presented.

On the other hand, in [1], the discussion focused only on the impor-
tant TE/TM case, and the TEM mode (or modes) was not considered. It
is shown in this paper that inclusion of the TEM mode does not exclude
the possibility to use line integrals to compute coupling coefficients be-
tween all modes. In addition, it is also shown how normalization inte-
grals and coupling between degenerate modes can be evaluated in terms
of line integrals, leading to a complete self-consistent line-integral for-
mulation of MM.

II. FORMULATION

We consider two facing lossless homogeneous waveguides, wave-
guide “b” (the “big” waveguide) and waveguide “s” (the “small” wave-
guide), whose transverse cross sections are indicated by
b and
s, re-
spectively [
b completely encloses
s, although the boundaries may
have a common part (see Fig. 1)]. Let the respective boundaries be in-
dicated byLb andLs.

Multiply connected boundaries allow the existence of one or more
TEM modes in addition to the standard TE and TM set, and we assume
that both waveguides have a multiply connected boundary. Lettingz
represent the propagation axis anduz its normal unit vector, the trans-
verse electric and magnetic fieldsen, hn for the generic waveguide
“n” (n can be eitherb or s) can be obtained by two Hertz-type poten-
tials, i.e.,'n and n, as follows:

e
TE

n = Anrt'n � uz (TE)
h
TE

n = AnYnuz � e
TE

n

(1)

e
TM

n = Bnrt n (TM)
h
TM

n = BnYnuz � e
TM

n

(2)
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Fig. 1. Step discontinuity between arbitrarily shaped waveguides.

e
TEM

n = B0nrt 0n (TEM)
h
TEM

n = B0nY0nuz � e
TEM

n

(3)

wherert represents the “transverse” gradient operator,Yn (Y0n) is the
modal admittance,An, Bn, andB0n are arbitrary normalization con-
stants, and, for clarity, we have used a different symbol 0n to indicate
the TEM hertzian potential. The potentials satisfy the following equa-
tions:

(r2t + k2n)'n = 0; in 
n

@'n=@� = 0; onLn

(4)

(r2t + �2n) n = 0; in 
n

 n = 0; onLn

(5)

r
2

t 0n = 0; in 
n

 0n = const; onLn

(6)

where� is the outward normal direction. The constant value of 0n
can be different for any simply connected part of the boundaryLn.

A. Normalization

In order to apply MM, one must first define a normalization for the
electric or magnetic field. We choose an explicit normalization for the
electric field and assume that the transverse electric mode functions are
real (this is possible since we only deal with the case of lossless homo-
geneous waveguides). Under this assumption, to simplify the notation
we define

ha; bi =




a � b d
:

By applying Green’s first identity




rtf � rtgd
 = �




gr2

t f d
+
L

g
@f

@�
dl (7)

in a region
 with boundaryL, one can easily obtain that

heTEn ; e
TE

n i =A2nk
2

n




'
2

n d
 (8)

heTMn ; e
TM

n i =B2n�
2

n




 
2

n d
 (9)

heTEMn ; e
TEM

n i =B20n
L

 0n
@ 0n

@�
dl: (10)

We impose the following normalization condition:

hen; eni = 1: (11)
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Equation (11) can be expressed as a line integral. For any functionF

satisfying

(r2

t + k
2)F = 0 (12)

in a region
 with boundaryL, by applying L’Hopital rule, one can
obtain the following identity (see the Appendix):




F
2
d
 = �

1

2k L

F
@2F

@k @�
�
@F

@k

@F

@�
dl: (13)

Applying (11) and (13) with the appropriate boundary conditions for
the potentials leads to

An =� �
kn

2 L

'n
@2'n

@kn @�
dl

�1=2

(14)

Bn =�
�n

2 L

@ n

@�n

@ n

@�
dl

�1=2

(15)

B0n =�
L

 0n
@ 0n

@�
dl

�1=2

(16)

completely specifying the normalization constants in terms of line in-
tegrals.

B. MM

Since MM is a well-known technique [7], only a brief summary is
sufficient for the purpose of this paper. Application of MM requires the
following:

• fields expansion in both waveguides by a sum of modes with un-
known coefficients;

• application of the continuity conditions to the electric and mag-
netic fields;

• projection of the continuity equations on to a suitable set of wave-
guide modes [usually surface
b�
s is a metallic one and, in this
case, the electric-field continuity equations are projected using
the set of modes of the “big” waveguide and the magnetic-field
continuity equations are projected using the “small” waveguide
mode set (alternative projection methods can be found in [7])].

For simplicity, we redefine the potentials so that (11) applies and we
can get rid of constantsAn,Bn, andB0n. The generic coupling coef-
ficient (projection) takes on the generic formheb; esi, where we use
subscriptb for the fields (and potentials) relative to the “big” waveguide
and subscripts for those of the “small” waveguide. The reduction to a
line-integral form is dependent on the type of the two modes. From [1]
and using (1) and (2), one gets

heTEb ; e
TE

s i =
k2s

k2s � k2b L

's
@'b

@�
dl (17)

heTMb ; e
TM

s i =
�2b

�2b � �2s L

 b
@ s

@�
dl (18)

heTMb ; e
TE

s i =
L

 b
@'s

@l
dl = �

L

's
@ b

@l
dl (19)

heTEb ; e
TM

s i =0: (20)

When a TEM mode is considered, some additional work is needed.
Simple algebraic manipulations yield

heTEMb ; e
TEM

s i =
L

 0b
@ 0s

@�
dl =

L

 0s
@ 0b

@�
dl (21)

heTMb ; e
TEM

s i =
L

 b
@ 0s

@�
dl (22)

heTEb ; e
TEM

s i =0 (23)

heTEMb ; e
TE

s i =
L

 0b
@'s

@l
dl = �

L

's
@ 0b

@l
dl (24)

heTEMb ; e
TM

s i =0 (25)

(the proofs follow in the Appendix).
It is stressed that (21)–(25) hold independently of the shape of

boundaryLs.

C. Degenerate Modes

The case of degenerate modes (modes having the same eigenvalues)
can be treated as a limiting case. We are interested in coefficients rep-
resenting TE–TE coupling and TM–TM coupling. In the case of de-
generate modes, one finds

heTEb ; e
TE

s i = �
k

2 L

's
@2'b

@k @�
dl (26)

wherek = kb = ks

heTMb ; e
TM

s i =
�

2 L

@ b

@�

@ s

@�
dl (27)

where� = �b = �s.

III. CONCLUSIONS

We have extended the line-integral formulation of MM to include
the case of TEM modes of normalization constants and of degenerate
TE–TE and TM–TM modes. The resulting formulation of MM com-
pletely avoids surface integrals, with benefits in terms of computation
time and physical understanding.

APPENDIX

Consider two functionsf andg satisfying the following equations:

(r2

t + �
2

f )f =0 (28)

(r2

t + �
2

g )g =0 (29)

in a region
 with boundaryL. By multiplying the first equation byg,
the second byf , and by subtracting them, one gets

(�2g � �
2

f )fg + fr2

t g � gr2

tf = 0: (30)

By integrating in





fg d
 = �
1

� 2g � � 2f



(fr2

t g � gr2

t f)d
: (31)

The right-hand-side member can be transformed into




(fr2

t g � gr2

t f)d
 =
L

f
@g

@�
� g

@f

@�
dl (32)

to get




fg d
 =
1

� 2f � � 2g L

f
@g

@�
� g

@f

@�
dl: (33)
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We now compute the limit

� =
L

lim
� !�

lim

d

d�g
f
@g

@�
� g

@f

@�

d

d�g
(�2f � � 2g )

dl (34)

to get

� = �
1

2� L

f
@2g

@�@�
�
@g

@�

@f

@�
dl: (35)

Equation (35) can be used to get (11), (26), and (27).

A. TEM–TEM coupling

Equation (21) follows trivially from Green’s first identity




rt 0b � rt 0s d


= �




 0br
2

t 0s d
+
L

 0b
@ 0s

@�
dl

sincer2

t 0s = 0.

B. TM–TEM coupling

Equation (22) follows similarly from Green’s first identity.

C. TE–TEM coupling

Using the general result [1]




rtf � rtg � uz d
 =
L

f
@g

@l
dl

we can write

heTEb ; e
TEM

s i = �
L

'b
@ 0s

@l
dl = 0

since 0s is constant onLs.

D. TEM–TM coupling

The integral is




rt 0b � rt s d


= �




 sr
2

t 0b d
+
L

 s
@ 0b

@�
dl (36)

and sincer2

t 0b = 0 in 
s and s = 0 onLs, the result is zero.
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Improved Automatic Parameter Extraction of InP-HBT
Small-Signal Equivalent Circuits

B. Willén, Marcel Rohner, I. Schnyder, and H. Jäckel

Abstract—An improved automatic extraction technique for determi-
nation of the element values of an InP heterojunction-bipolar-transistor
small-signal -model is presented. Numerical optimization is shown to
yield reproducible and physically relevant results when using a suitable
figure-of-merit. The outcome of such an extraction is displayed for a range
of operation points and the resulting bias dependencies of the element
values is shown to be in good agreement with theoretical effects. The
technique is further used to validate the quality of the extraction itself by
showing a significant sensitivity to a deliberate error in the value of each
element.

Index Terms—HBT, InP, numerical parameter extraction.

I. INTRODUCTION

Computer-aided design of integrated circuits relies on equivalent
transistor models that are able to describe the terminal characteris-
tics of individual devices properly. Element values of such models for
InP-based heterojunction bipolar transistors (HBTs) are regularly ex-
tracted by fitting simulatedS-parameters to measured numerically. Re-
producibility, as well as physical relevance of the extracted small-signal
model elements, are important prerequisites for process monitoring and
device optimization, but it is well known that this extraction represents
an overdetermined optimization problem. The frequency range covered
by state-of-the-art measurement equipments does not extend to all rel-
evant circuit poles, and lumped-circuit models become questionable at
high frequencies. Several methods have been proposed to overcome
this nondeterministic behavior as follows.

• Some element values, i.e., the ratio of the internal to external col-
lector area and the resistance of the metal contacts, are taken from
the geometrical layout or test structures to reduce the number of
elements needed to be extracted. These values should ideally also
be derived from the measurements to be able to reveal fabrication
deficiencies.

• Most notable are analytical extraction methods where some el-
ement values are found by extrapolation rather than numerical
optimization, e.g., fromZ11 � Z12, Z22 � Z21, Z12 � Z21, and
Z12 [1]–[3].

By fixing some element valuesa priori, the dimension of the parameter
space is decreased so that subsequent tuning becomes better defined.
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